UNIT – 2

Antibiotics

Historical Background:

- The discovery of antibiotics in the early 20th century revolutionized medicine.
- Paul Ehrlich coined the term "magic bullet" and developed Salvarsan, an arsenicbased drug.
- Alexander Fleming's discovery of penicillin in 1928 marked the beginning of the antibiotic era.

Nomenclature:

- Antibiotics are named based on chemical structure, source, or function.
- The suffix "-mycin" is common for macrolides, "-cillin" for penicillins, etc.

Stereochemistry:

- Stereochemistry plays a role in antibiotic activity, affecting interactions with biological targets.
- For example, the macrolide ring structure in macrolide antibiotics has specific stereochemical requirements.

Structure-Activity Relationship (SAR):

- SAR studies aid in understanding how the structure of antibiotics influences their pharmacological activity.
- In macrolides, the macrocyclic lactone ring is crucial for activity against Grampositive bacteria.

Chemical Degradation:

- Antibiotics may degrade due to environmental factors like temperature, light, or pH.
- Proper storage is crucial to maintain their stability.

Classification and Important Products:

Macrolides:

- 1. Erythromycin:
 - Structure: Macrocycle with cladinose and desosamine sugar moieties.
 - Activity: Broad-spectrum against Gram-positive bacteria.
- 2. Clarithromycin:
 - Semi-synthetic derivative of erythromycin.
 - Advantages: Improved acid stability and broader spectrum.

3. Azithromycin:

- Structure: Azalide subclass of macrolides.
- Features: Longer half-life, once-daily dosing.

Miscellaneous Antibiotics:

- 1. Chloramphenicol:
 - Activity: Broad-spectrum against Gram-positive and Gram-negative bacteria.
 - Concerns: Associated with serious side effects, limiting its use.
- 2. Clindamycin:
 - Structure: Lincosamide antibiotic.
 - Application: Effective against anaerobic bacteria.

Prodrugs:

- Basic Concepts:
 - Prodrugs are inactive drug precursors that undergo transformation in the body to release the active drug.
 - Used to improve absorption, stability, or reduce side effects.
- Application of Prodrugs:
 - Examples include enalapril (converted to enalaprilat for hypertension) and oseltamivir (converted to oseltamivir carboxylate for influenza).

Antimalarials:

- 1. Quinolines:
 - Structure-Activity Relationship (SAR):
 - Quinine and chloroquine have a quinoline structure.
 - Resistance issues have led to the development of newer agents.
 - Important Products:
 - Quinine Sulphate: Used historically for malaria.
 - Chloroquine: Effective against Plasmodium species.
 - Amodiaquine, Primaquine Phosphate, Pamaquine: Varied uses in malaria treatment and prevention.
 - **Quinacrine Hydrochloride:** Historically used for malaria, now mainly for other conditions.
 - Mefloquine: Used for both treatment and prevention.
- 2. Biguanides and Dihydrotriazines:

- Products:
 - Cycloguanil Pamoate, Proguanil: Antifolate antimalarials.
- 3. Miscellaneous Antimalarials:
 - **Pyrimethamine:** Antifolate used in combination therapies.
 - Artesunate, Artemether: Derived from artemisinin, effective against multidrug-resistant malaria.
 - Atovaquone: Inhibits mitochondrial electron transport in the parasite.

This overview provides a comprehensive understanding of antibiotics, including historical context, nomenclature, stereochemistry, structure-activity relationships, chemical degradation, and important products within the specified classes.